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Problem 1:

If two palindromes (numbers which read the same backwards and forwards) sum to 2024, find the sum
of all possible values for the smaller palindrome.
Proposed by ihatemath123.

We will use casework on the number of digits in each palindrome:

• Both four digits. Since each palindrome is at least 1000, each palindrome is at most 1024. The only
palindrome in this range is 1001, and evidently 1001 + 1001 ̸= 2024, so there are no solutions in this case.

• One four-digit, one three-digit. Since the three-digit palindrome is at least 101, the four-digit palindrome is
at most 2024 − 101 = 1923; in particular, it must begin and end with a 1. So, checking the units digit, the
three-digit palindrome must begin and end with a 3.
Furthermore, it’s clear by the divisibility-by-11 rule that all four-digit palindromes are multiples of 11. Since
2024 is also a multiple of 11, it follows that our three digit palindrome must be a multiple of 11. So, by the
same divisibility trick, it follows that the middle digit of the three-digit palindrome is 6. Subtracting 363 from
2024 gives us our four-digit palindrome, 1661.
So, 363 is one possibility.

• One four-digit, one two-digit. If our four-digit palindrome begins and ends with a 1, by checking the units
digit, our two-digit palindrome must begin and end with a 3; in other words, it must be 33. Subtracting this
from 2024 gives us our four-digit palindrome, 1991. So, 33 is one possibility.
Or, if our four-digit palindrome begins and ends with a 2, our two-digit palindrome must be 22, so our
four-digit palindrome would be 2002; we have 22 as our last possibility.

• One four-digit, one one-digit. We can run through the 9 single-digit palindromes to verify that they all fail.

• Two palindromes less than four digits long will sum to at most 999+ 999 = 1998, so we don’t have to worry
about these cases.

In total, the sum of our possible palindromes is 363 + 33 + 22 = 418 .

Problem 2:

Find the number of ways that the set {1, 2, 3, . . . , 18} can be split into two indistinguishable sets of nine
elements, such that one set has a median of 6 and the other set has a median of 12.
Proposed by ihatemath123.

Let S be the set with median 6 and let T be the set with median 12. There must be four elements in S less
than 6 and the remaining element must belong to T . There are

(
5
1

)
= 5 ways to partition the first 5 integers

between S and T .
Next, there must be four elements in T greater than 12, and the remaining two elements must belong to S.

There are
(
6
2

)
= 15 ways to partition the last 6 integers between S and T .

There are two more integers which must be added to S and three more integers which must be added to T .
For the 5 integers between 6 and 12, there are

(
5
2

)
= 10 ways to partition them between S and T .

Multiplying the possiblilites in each section together gives us our total: 5 · 15 · 10 = 750 .



Problem 3:

Evan thinks of two positive integers. Their quotient, which leaves no remainder, divides their sum, and
their product is 784,000. Find the remainder when the absolute difference between Evan’s two numbers
is divided by 1000.
Proposed by ihatemath123.

Let m and n be Evan’s two integers. We have that mn = 784,000 = 27 · 53 · 72. We also know that m
n

is
an integer, as well as

m+ n(
m
n

) =
mn+ n2

m
= n+

n2

m
.

So, n divides m, which divides n2. So:

• The exponent of 2 in the prime factorization of n must be no greater than 3, since n divides m. It must also
be no less than 3, since n2 is a multiple of m. Therefore, the exponent of 2 in the prime factorization of n is
exactly 3.

• The exponent of 5 in the prime factorization of n must be no greater than 1, since n divides m. It must also
be no less than 1, since n2 is a multiple of m. Therefore, the exponent of 5 in the prime factorization of n is
exactly 1.

• The exponent of 7 in the prime factorization of n must be no greater than 1, since n divides m. It must also
be no less than 1, since n2 is a multiple of m. Therefore, the exponent of 7 in the prime factorization of n is
exactly 1.

So, n = 23 · 5 · 7 = 280 and m = 24 · 52 · 7 = 2800. Their difference is 2520 which leaves a remainder of 520
when divided by 1000.

Problem 4:
Julie picks positive reals b and x with b ̸= 1 and writes down the logarithm logb x. If she were to erase
b and replace it with b

2
, the value of the logarithm would increase by 12. Instead, if she were to erase b

and replace it with 2b, the value of the logarithm would decrease by 9. Find log2(x).
Proposed by ihatemath123.

Let X = log2 x (what we’re asked to find) and let B = log2 b. Using the change-of-base log rule, we have{
X

B−1
− X

B
= 12

X
B+1

− X
B

= −9.

Cross multiplying in both equations and simplifying the left hand sides gives us{
X = 12B(B − 1)

X = 9B(B + 1).

Dividing the second equation by the first gives us B+1
B−1

= 4
3
, so B = 7. Plugging this back into either equation

gives us X = 504 .



Problem 5:

Find the number of ways to split an eight by eight square into five rectangles with integer side lengths, no
two of which share more than one vertex in common. (Rotations and reflections are considered distinct.)

Proposed by ihatemath123.

It’s easy to show that the below two situations are the only ways to split a square satisfying the conditions
in the problem:

It suffices to pick the central rectangle and then extend its sides in one of the two ways shown above. This
central rectangle can’t share an edge with the eight by eight square, so there are 7 horizontal lines to choose
two horizontal sides from, as well as 7 vertical lines to choose two vertical sides from. Our final answer is((

7

2

)
·
(
7

2

))
· 2 = 882 .

Problem 6:
Let m and b be real numbers. Distinct points A, B, C and D lie on the line y = mx + b in that order,
equally spaced. Given that A and C lie on the parabola y = x2 + 9x + 19 and B and D lie on the
parabola y = x2 + x+ 15, find mb.
Proposed by ihatemath123.

We can rewrite the equations of the parabola in vertex form:

y =

(
x+

9

2

)2

− 5

4
, y =

(
x+

1

2

)2

+
59

4
.

So, a shift 4 units right and 16 units up will send the first parabola to the second one. This shift must also send
segment AC to BD, since AC = BD and the two segments obviously have the same slope. So,

−→
AB =

−−→
BC =

−−→
CD = ⟨4, 16⟩

and consequently m = 16
4
= 4.

The x-coordinates of points A and C are the values of x such that 4x+ b = x2 + 9x+ 19; rearranging, we
have that x2 +5x+19− b = 0. So, by Vieta’s formula, the sum of the x-coordinates of A and C is −5. Since−→
AC = ⟨8, 32⟩, it follows that the difference in the x-coordinates is 8. So, the x-coordinates of A and C are
−13

2
and 3

2
.

So, plugging the x-coordinate −13
2

into the equation of the first parabola, we have that A = (−13
2
, 11

4
).

Plugging this into the equation y = 4x+ b gives us that b = 115
4

, so mb = 4 · 115
4

= 115 .



Problem 7:

In △ABC, points D, E and F lie on segments BC, AC and AB such that BD = DC = 5, DE bisects
∠ADC and DF bisects ∠ADB. If DE = 6 and DF = 2, the length DA can be expressed as a+

√
b

c
,

where a, b and c are positive integers with gcd(a, c) = 1. Find a+ b+ c.
Proposed by ihatemath123.

A

B CD

EF

2 6

5 5

We have that
∠EDF = ∠EDA+ ∠FDA =

1

2
· (∠CDA+ ∠BDA) = 90◦,

so △DEF is right. By the Pythagorean theorem, EF = 2
√
10. By the angle bisector theorem,

AF

FB
=

AD

DB
=

AD

DC
=

AE

AC
,

so FE ∥ BC. Using similar triangle ratios, AF
AB

= 2
√
10

10
=

√
10
5

, so AF
FB

=
√
10

5−
√
10

=
√
10+2
3

. We now use the angle
bisector theorem again to finish:

AD

DB
=

AF

FB
=⇒ AD =

AF ·DB

FB
=

5
√
10 + 10

3
.

Extracting gives us our final answer of 263 .



Problem 8:

If a, b and c are complex numbers such that
|a|+ b+ c = 7i

a+ |b|+ c = 9i

a+ b+ |c| = 10i,

find |a+ b+ c|2.
Proposed by ihatemath123.

Solution 1 (due to Eibc): We want

|a+ b+ c|2 = |a+ b+ c||a+ b+ c|

= |a|2 + |b|2 + |c|2 +
∑
sym

ab

However, from the first equation we have

49 = ||a|+ b+ c|2

= ||a|+ b+ c|||a|+ b+ c|
= |a|2 + |b|2 + |c|2 + |a|(b+ b+ c+ c) + bc+ bc

= |a|2 + |b|2 + |c|2 + |a|(2Re(b+ c)) + bc+ bc.

However, from looking at the real part of the first equation we have Re(b+ c) = −|a|, so this is equal to

|a|2 + |b|2 + |c|2 + |a|(−2|a|) + bc+ bc = −|a|2 + |b|2 + |c|2 + bc+ bc.

Similarly, we have |a|2− |b|2+ |c|2+ ac+ ac = 81 and |a|2+ |b|2− |c|2+ ab+ ab = 100, and summing these
three gives

|a|2 + |b|2 + |c|2 +
∑
sym

ab = 49 + 81 + 100 = 230 .

Solution 21: Taking the imaginary parts of both sides of each equation gives us three linear equations. We
can solve this system of equations to get that Im(a) = 6, Im(b) = 4 and Im(c) = 3. Let x, y and z be the
reals such that a = x+ 6i, b = y + 4i and c = z + 3i. Substituting this into our system of equations gives us

y + z = −|x+ 6i|
x+ z = −|y + 4i|
x+ y = −|z + 3i|.

Squaring each equation, rearranging and adding all the equations together gives us

x2 + y2 + z2 + 2xy + 2yz + 2xz = 62 + 42 + 32.

The left hand side factors as (x+ y + z)2. So,

|a+ b+ c|2 = (6 + 4 + 3)2 + 62 + 42 + 32 = 230 .

1This was my original solution. I never noticed that the answer, 230, was equal to 72 + 92 + 102 – I first realized this when I read Eibc’s
solution (solution 1) in the discussion forum. - ihatemath123



Problem 9:

Parallelogram ABCD has an area of 350 and satisfies AB = 35. Let F and G be points in the interior
of the parallelogram such that FG = 24 and FG ∥ AB. If there exists an ellipse with foci F and G
tangent to all four sides of the parallelogram, find BC2.
Proposed by OronSH.

A B

CD

F G

X

10

35

Let X be the foot from C to line AB. The area information tells us that CX = 10. This is also the minor axis
of the ellipse. So, we can use the well known ellipse formula

(minor axis)2 + (dist. between foci)2 = (major axis)2

to get that the major axis of this ellipse is 26 units long. Since the major axis contains FG, it is parallel to AB,
so when we vertically stretch the figure, the major axis of the ellipse will remain parallel to AB. We vertically
stretch the figure by a factor of 26

10
, so that the minor axis of the ellipse is 26 as well, making it a circle.

This stretch preserves parallel lines, so the resulting shape is still a parallelogram. Since it has an incircle, it
must be a rhombus. So, under the stretch, BC is elongated to 35 units, CX is elongated to 26 units and BX
is unchanged. Since △CBX is still a right triangle, it follows that BX = 352 − 262, so

BC2 = BX2 + CX2 = 352 − (102 + 242) + 102 = 352 − 242 = 649 .

Problem 10:

Alex and Oron are playing a game. They take turns spinning a fair spinner with ten sectors of equal size,
numbered 1, 2, . . . , 10. Alex goes first. After the first spin, if a player spins a number less than or equal
to the number previously spun, the game ends and the other player wins. The probability that Oron loses
the game can be expressed as m

n
, where m and n are coprime integers. Find the remainder when m+ n

is divided by 1000.
Proposed by ihatemath123.

After k spins, there are
(
10
k

)
possible sets of numbers which have been spun, so the probability that the game

is still going after k spins is
(
10
k

)
· 10−k. So, the probability that Oron loses (i.e. the probability that the game

ends after an odd number of legal spins) is((
10

1

)
· 10−1 −

(
10

2

)
· 10−2

)
+ · · ·+

((
10

9

)
· 10−9 −

(
10

10

)
· 10−10

)
= 1−

(
1− 1

10

)10

=
1010 − 910

1010
.

Computation gives us (m+ n) mod 1000 = 599 .



Problem 11:

Let n and k be positive integers such that the sum of the n smallest perfect powers of k (including 1) is
a multiple of 1001. Find the number of possible values of n less than 1001.
Proposed by P_Groudon

By the Chinese Remainder Theorem, we may split this up into three parts: we want to find the possible
values of n in a pair (n, k) that satisfies all three of these equations:

1 + k + · · ·+ kn−1 ≡ 0 (mod 7)

1 + k + · · ·+ kn−1 ≡ 0 (mod 11)

1 + k + · · ·+ kn−1 ≡ 0 (mod 13).

We will just work with the first one:

1 + k + · · ·+ kn−1 ≡ 0 (mod 7).

Firstly, if k ≡ 1 (mod 7), then we must have n ≡ 0 (mod 7) since 1, k, . . . , kn−1 are all 1 (mod 7).
If k ̸≡ 1 (mod 7), we can simplify the geometric series as kn−1

k−1
. Because k− 1 ̸≡ 0 (mod 7), the geometric

series is a multiple of 7 if and only if
kn − 1 ≡ 0 (mod 7).

Let p be a primitive root mod 7. From the above equation, it’s clear that k ̸= 0, so we can express k as pe.
Since we are assuming k ̸= 1, it follows that e ̸≡ 0 (mod 6). However, the equation above implies that e ·n ≡ 0
(mod 6); if e ̸≡ 0 (mod 6), then n must share some prime factors with 6.

From just our first equation, we know that at least one of the following is true: n ≡ 0 (mod 7), gcd(n, 6) ̸= 1.
Similarly, the other two equations tell us that either n ≡ 0 (mod 11) or gcd(n, 10) ̸= 1 or both; either n ≡ 0

(mod 13) or gcd(n, 12) ̸= 1 or both.
Now, to count the number of such n, we split into cases:

• If n ≡ 3 (mod 6), then gcd(n, 6) ̸= 1 and gcd(n, 12) ̸= 1. Therefore, the only remaining condition on n
is that at least one of the following is true: n ≡ 0 (mod 11) or gcd(n, 10) ̸= 1. In the first case, n ≡ 33
(mod 66), which yields 15 solutions for n. In the second case, since n is odd, it must be a multiple of 5;
therefore, n ≡ 15 (mod 30), which yields 33 solutions for n.
We’ve overcounted the cases where n is a multiple of both 5 and 11; this is when n ≡ 165 (mod 330), which
is 3 overcounted solutions.
Therefore, this case yields 33 + 15− 3 = 45 solutions in total.

• If n ≡ 0 (mod 2), then gcd(n, 6), gcd(n, 12) and gcd(n, 10) are all not equal to 1, so all three conditions
are all immediately satisfied. So, all even n work, yielding 500 solutions.

• Otherwise, gcd(n, 6) = 1. Consequently, gcd(n, 12) = 1 as well. So, n ≡ 0 (mod 7) and n ≡ 0 (mod 13).
Because n < 1001, we cannot have n ≡ 0 (mod 11) as well; therefore, gcd(n, 10) ̸= 1. Since n is not even,
it must be a multiple of 5. So, this case yields one solution: n = 7 · 13 · 5 = 455.

Altogether, we have 45 + 500 + 1 = 546 solutions.



Problem 12:
Points D and E lie on sides AB and AC of △ABC, respectively, such that the circumcircles ω1 and ω2

of △ABE and △ADC, respectively, meet on side BC. Line DE meets ω1 and ω2 at points X and Y ,
respectively, such that BC = 14, XY = 19, BD = 6 and CE = 9. If the length DE can be expressed
as a−

√
b

c
, where a, b and c are positive integers with gcd(a, c) = 1, find a+ b+ c.

Proposed by bissue.

Let F be the point on BC where ω1 and ω2 intersect. Now we have that

DE(19−DE) = DE(XD + EY )

= DE ·XD +DE · EY

= BD ·DA+ CE · EA

= BD · (BA− BD) + CE · (CA− CE)

= (BD · BA− BD2) + (CE · CA− CE2)

= BD · BA+ CE · CA− 36− 81

= BF · BC + CF · CB − 36− 81

= BC · (BF + FC)− 36− 81

= BC2 − 36− 81

= 196− 36− 81

= 79.

So, we can solve a quadratic to get that DE = 19±
√
45

2
. Extracting gives us 19 + 45 + 2 = 066 .



Problem 13:

Let {an} and {bn} be two sequences of real numbers such that a1 = 20, b1 = 23 and
ai+1 =

√
|ai · bi|+ ai+bi

2

bi+1 =
√

|ai · bi| − ai+bi
2

for all positive integers i. Find the smallest integer k for which ak = bk.
Proposed by ihatemath123.

Our recurrence is homogeneous, so for simplicity we multiply the initial terms by 2: a1 = 40 and b1 = 46.
If ak = bk, it follows that ak−1 + bk−1 = 0, from which it follows that ak−2bk−2 = 0. So, we want to find the

smallest k such that ak−2bk−2 = 0.
For all positive i, we have that

ai+2bi+2 = |ai+1bi+1| −
(
ai + bi

2

)2

= |ai+1bi+1| −

(
2
√
|aibi|
2

)2

= |ai+1bi+1| − |aibi|.

Letting ci = |aibi|, the recurrence becomes

ci+2 = |ci+1 − ci|.

We can manually compute that c1 = 1840 and c2 = 9. Now, we just have to repeat this recurrence until we
reach a term ci which equals 0. The first few terms look like this:

1840, 9, 1831, 1822, 9, 1813, 1804, 9, 1795, 1786, 9, . . .

We have that c3i−2 = 1858− 18i, c3i−1 = 9 and c3i = 1849− 18i for 1 ≤ i ≤ 102. So, we compute the terms
from c307 onwards. We know that c305 = 9 and c306 = 13, so we continue from c307:

4, 9, 5, 4, 1, 3, 2, 1, 1, 0.

So, c316 = 0, from which it follows that a318 = b318. Therefore, our answer is 318 .



Problem 14:
Alexandre forms a piece of cookie dough in the shape of a regular hexagon with a side length of 8 cm,
and places it at the center of a square baking pan with a side length of 50 cm, as shown in the diagram
below. He then drops a circular cookie cutter with a radius of 7 cm randomly and uniformly inside the
baking pan, such that the entire cutter lies within the pan. The expected number of pieces that the
cookie dough gets cut into can be expressed as m

n
for coprime positive integers m and n. Find m+ n.

(For example, in the diagram below, the cookie is cut into two pieces. If the cookie cutter does not touch
the dough, the cookie dough is in 1 piece.)

Proposed by ihatemath123.

The probability that the cookie cutter’s circle is tangent to the perimeter of the cookie is 0, so we can
disregard this case.

Claim: We have
(# pieces) = (# intersections)

2
+ 1.

The cookie cutter will split the cookie into some pieces which lie outside of the cookie cutter and a single
piece which lies inside the cookie cutter. For the pieces which lie outside of the cutter, along its perimeter, there
will be two intersections between the cutter and the cookie. Therefore, for each piece of the cookie which lies
outside the cutter, there are two corresponding intersections. Adding the single piece of the cookie which lies
inside the cutter gives us our desired claim. □

There are two ways to proceed:
Solution 1A: It suffices to calculate the expected number of intersections between the cookie cutter and one

side of the hexagon, since because of linearity of expectation, we can multiply that value by 6.

In the diagram above, a randomly dropped circle hits the segment exactly once if it lands in the red or blue
region, and hits the segment twice if it lands in the pink region. It suffices to find



[red] + [blue] + 2 · [pink] = ([red] + [pink]) + ([blue] + [pink]) =

= 8 · 14 + 8 · 14 = 224.

In particular, on the last step, we can calculate the area of the red+pink and blue+pink shapes easily because
they are just skewed rectangles with a base of 8 and a height of 2 · 7 = 14.

So, the expected number of intersections between the cookie cutter and a side of the hexagon is 224
362

. To
finish, the expected number of pieces is

6 · 224
362

2
+ 1 =

41

27
=⇒ 068 .

Solution 1B: Because we’re calculating the expected number of intersections between the cookie and the
cutter, linearity of expectation “tells us” that the shapes of the cookie and the cutter don’t actually matter –
this expected value that we’re searching for only depends on their perimeters.

So, instead of a hexagonal cookie, we will assume that it is a circle with radius 24
π

. Then, the cutter’s circle is
tangent to the cookie’s circle with probability 0; otherwise, they intersect at 0 or 2 points. The circles intersect
at two points if and only if the center of the cookie cutter lies within 7 units of the circumference of the cookie.

So, the success region is an annulus with an inner radius of 24
π
− 7 and an outer radius of 24

π
+ 7. The area of

the annulus is

π ·

((
24

π
+ 7

)2

−
(
24

π
− 7

)2
)

= 4π · 24
π

· 7 = 672,

so the expected number of intersections is 672·2
362

. Finally, the expected number of pieces is

672 · 2
362 · 2

+ 1 =
41

27
=⇒ 068 .



Problem 15:

Let △ABC be an acute triangle with circumcenter O. Let OB and OC be the circumcenters of △BOA
and △COA, respectively, and let P be the circumcenter of △OOBOC . If the circumradii of △ABC,
△OOBOC and △PBC are 9, 15 and 11, respectively, find AP 2.
Proposed by ihatemath123.

A

B C

O

Q

P

OB

OC

Claim: Point P lies on the perpendicular bisector of BC.

Let XA be the antipode of O with respect to (BOC); define XB and XC similarly. Then, since ∠OAXB =
∠OAXC = 90◦ and likewise for other vertices of △ABC, the intouch triangle of △XAXBXC is △ABC. In
particular, O is the incenter of △XAXBXC .

The incenter-excenter lemma tells us that the circumcenter of △XBOXC lies on line XAO, the perpendicular
bisector of BC. Now, taking a homothety with scale factor 1

2
centered at O sends XB and XC to OC and

OB, respectively, as well as sending the circumcenter of △XBOXC to P , the circumcenter of △OCOOB. This
homothety sends the perpendicular bisector of BC to itself, so it follows that P lies on the perpendicular bisector
of BC. □

As a consequence, △PBC is isosceles, so Q also lies on the perpendicular bisector of BC.
We now know the side lengths of △OQC ∼= △OQB: we have that QC = 11, OC = 9 and OQ =

OP − QP = 4. So, by Heron’s formula, [OQC] = 12
√
2, so the length of the altitude from C to line OQ is

6
√
2. Thus, BC = 12

√
2.

Claim: We have △BOC ∼ △OBPOC .

Clearly, both triangles are isosceles, so it suffices to show that ∠BOC = ∠OBPOC . Let M and N be the
midpoints of AB and AC, respectively. Then, we have that

∠BOC = 2∠A = 2 · (180◦ − ∠MON) = 2 · (180◦ − ∠OBOOC) = ∠OBPOC . □

So, OBOC = BC · 15
9
= 20

√
2.



Now, to finish, we “coordinate-bash”, setting OBOC as our horizontal axis:
P

OB OC

O

A

54.5

4.5

We can use the Pythagorean theorem to get that the distance from P to OBOC is 5. Furthermore, OA = 9
(since it is a radius of the circumcircle of △ABC), and by definition OB and OC lie on the perpendicular bisector
of OA. Hence, segment OA is split into two segments of length 4.5.

The “vertical” distance between O and P is 9.5. Furthermore, OP = 15 because it is a radius of the
circumcircle of △OBOOC . So, the horizontal distance between O and P is

√
152 − 9.52.

The vertical distance between A and P is 5− 4.5 = 0.5; the horizontal distance is
√
152 − 9.52. Therefore,

AP 2 = 0.52 + 152 − 9.52 = 135 .


